CleanM

Author:

Giannakopoulou Stella1,Karpathiotakis Manos1,Gaidioz Benjamin1,Ailamaki Anastasia2

Affiliation:

1. Ecole Polytechnique Fédérale de Lausanne

2. Ecole Polytechnique Fédérale de Lausanne and RAW Labs SA

Abstract

Data cleaning has become an indispensable part of data analysis due to the increasing amount of dirty data. Data scientists spend most of their time preparing dirty data before it can be used for data analysis. At the same time, the existing tools that attempt to automate the data cleaning procedure typically focus on a specific use case and operation. Still, even such specialized tools exhibit long running times or fail to process large datasets. Therefore, from a user's perspective, one is forced to use a different, potentially inefficient tool for each category of errors. This paper addresses the coverage and efficiency problems of data cleaning. It introduces CleanM ( pronounced clean'em ), a language which can express multiple types of cleaning operations. CleanM goes through a three-level translation process for optimization purposes; a different family of optimizations is applied in each abstraction level. Thus, CleanM can express complex data cleaning tasks, optimize them in a unified way, and deploy them in a scaleout fashion. We validate the applicability of CleanM by using it on top of CleanDB, a newly designed and implemented framework which can query heterogeneous data. When compared to existing data cleaning solutions, CleanDB a) covers more data corruption cases, b) scales better, and can handle cases for which its competitors are unable to terminate, and c) uses a single interface for querying and for data cleaning.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bringing Data Analysis to the Files and the Database to the Command Line;2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE);2023-07-24

2. Sustainable manufacturing in the fourth industrial revolution: A big data application proposal in the textile industry;Journal of Industrial Engineering and Management;2022-10-10

3. EasyDR;Proceedings of the VLDB Endowment;2022-08

4. Scalable querying of nested data;Proceedings of the VLDB Endowment;2020-11

5. CHiSEL: a user-oriented framework for simplifing database evolution;Distributed and Parallel Databases;2020-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3