Scalable querying of nested data

Author:

Smith Jaclyn1,Benedikt Michael1,Nikolic Milos2,Shaikhha Amir2

Affiliation:

1. University of Oxford

2. University of Edinburgh

Abstract

While large-scale distributed data processing platforms have become an attractive target for query processing, these systems are problematic for applications that deal with nested collections. Programmers are forced either to perform non-trivial translations of collection programs or to employ automated flattening procedures, both of which lead to performance problems. These challenges only worsen for nested collections with skewed cardinalities, where both handcrafted rewriting and automated flattening are unable to enforce load balancing across partitions. In this work, we propose a framework that translates a program manipulating nested collections into a set of semantically equivalent shredded queries that can be efficiently evaluated. The framework employs a combination of query compilation techniques, an efficient data representation for nested collections, and automated skew-handling. We provide an extensive experimental evaluation, demonstrating significant improvements provided by the framework in diverse scenarios for nested collection programs.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comprehending queries over finite maps;International Symposium on Principles and Practice of Declarative Programming;2023-10-22

2. Incremental Processing of Structured Data in Datalog;Proceedings of the 21st ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences;2022-11-29

3. Functional collection programming with semi-ring dictionaries;Proceedings of the ACM on Programming Languages;2022-04-29

4. Scalable analysis of multi-modal biomedical data;GigaScience;2021-09

5. The Power of Nested Parallelism in Big Data Processing – Hitting Three Flies with One Slap –;Proceedings of the 2021 International Conference on Management of Data;2021-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3