Affiliation:
1. University of Waterloo
Abstract
We revisit column-oriented storage and query processing techniques in the context of contemporary graph database management systems (GDBMSs). Similar to column-oriented RDBMSs, GDBMSs support read-heavy analytical workloads that however have fundamentally different data access patterns than traditional analytical workloads. We first derive a set of desiderata for optimizing storage and query processors of GDBMS based on their access patterns. We then present the design of columnar storage, compression, and query processing techniques based on these desiderata. In addition to showing direct integration of existing techniques from columnar RDBMSs, we also propose novel ones that are optimized for GDBMSs. These include a novel list-based query processor, which avoids expensive data copies of traditional block-based processors under many-to-many joins, a new data structure we call single-indexed edge property pages and an accompanying edge ID scheme, and a new application of Jacobson's bit vector index for compressing NULL values and empty lists. We integrated our techniques into the GraphflowDB in-memory GDBMS. Through extensive experiments, we demonstrate the scalability and query performance benefits of our techniques.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献