Constructing and analyzing the LSM compaction design space

Author:

Sarkar Subhadeep1,Staratzis Dimitris1,Zhu Ziehen1,Athanassoulis Manos1

Affiliation:

1. Boston University

Abstract

Log-structured merge (LSM) trees offer efficient ingestion by appending incoming data, and thus, are widely used as the storage layer of production NoSQL data stores. To enable competitive read performance, LSM-trees periodically re-organize data to form a tree with levels of exponentially increasing capacity, through iterative compactions. Compactions fundamentally influence the performance of an LSM-engine in terms of write amplification, write throughput, point and range lookup performance, space amplification, and delete performance. Hence, choosing the appropriate compaction strategy is crucial and, at the same time, hard as the LSM-compaction design space is vast, largely unexplored, and has not been formally defined in the literature. As a result, most LSM-based engines use a fixed compaction strategy, typically hand-picked by an engineer, which decides how and when to compact data. In this paper, we present the design space of LSM-compactions, and evaluate state-of-the-art compaction strategies with respect to key performance metrics. Toward this goal, our first contribution is to introduce a set of four design primitives that can formally define any compaction strategy: (i) the compaction trigger, (ii) the data layout, (iii) the compaction granularity, and (iv) the data movement policy. Together, these primitives can synthesize both existing and completely new compaction strategies. Our second contribution is to experimentally analyze 10 compaction strategies. We present 12 observations and 7 high-level takeaway messages, which show how LSM systems can navigate the compaction design space.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3