Tailoring data source distributions for fairness-aware data integration

Author:

Nargesian Fatemeh1,Asudeh Abolfazl2,Jagadish H. V.3

Affiliation:

1. University of Rochester

2. University of Illinois at Chicago

3. University of Michigan

Abstract

Data scientists often develop data sets for analysis by drawing upon sources of data available to them. A major challenge is to ensure that the data set used for analysis has an appropriate representation of relevant (demographic) groups: it meets desired distribution requirements. Whether data is collected through some experiment or obtained from some data provider, the data from any single source may not meet the desired distribution requirements. Therefore, a union of data from multiple sources is often required. In this paper, we study how to acquire such data in the most cost effective manner, for typical cost functions observed in practice. We present an optimal solution for binary groups when the underlying distributions of data sources are known and all data sources have equal costs. For the generic case with unequal costs, we design an approximation algorithm that performs well in practice. When the underlying distributions are unknown, we develop an exploration-exploitation based strategy with a reward function that captures the cost and approximations of group distributions in each data source. Besides theoretical analysis, we conduct comprehensive experiments that confirm the effectiveness of our algorithms.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chameleon: Foundation Models for Fairness-Aware Multi-Modal Data Augmentation to Enhance Coverage of Minorities;Proceedings of the VLDB Endowment;2024-07

2. Fainder: A Fast and Accurate Index for Distribution-Aware Dataset Search;Proceedings of the VLDB Endowment;2024-07

3. PLUTUS: Understanding Data Distribution Tailoring for Machine Learning;Companion of the 2024 International Conference on Management of Data;2024-06-09

4. FairHash: A Fair and Memory/Time-efficient Hashmap;Proceedings of the ACM on Management of Data;2024-05-29

5. Fairness-Aware Data Preparation for Entity Matching;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3