FairHash: A Fair and Memory/Time-efficient Hashmap

Author:

Shahbazi Nima1ORCID,Sintos Stavros1ORCID,Asudeh Abolfazl1ORCID

Affiliation:

1. University of Illinois Chicago, Chicago, Illinois, USA

Abstract

Hashmap is a fundamental data structure in computer science. There has been extensive research on constructing hashmaps that minimize the number of collisions leading to efficient lookup query time. Recently, the data-dependant approaches, construct hashmaps tailored for a target data distribution that guarantee to uniformly distribute data across different buckets and hence minimize the collisions. Still, to the best of our knowledge, none of the existing technique guarantees group fairness among different groups of items stored in the hashmap. Therefore, in this paper, we introduce FairHash, a data-dependant hashmap that guarantees uniform distribution at the group-level across hash buckets, and hence, satisfies the statistical parity notion of group fairness. We formally define, three notions of fairness and, unlike existing work, FairHash satisfies all three of them simultaneously. We propose three families of algorithms to design fair hashmaps, suitable for different settings. Our ranking-based algorithms reduce the unfairness of data-dependant hashmaps without any memory-overhead. The cut-based algorithms guarantee zero-unfairness in all cases, irrespective of how the data is distributed, but those introduce an extra memory-overhead. Last but not least, the discrepancy-based algorithms enable trading off between various fairness notions. In addition to the theoretical analysis, we perform extensive experiments to evaluate the efficiency and efficacy of our algorithms on real datasets. Our results verify the superiority of FairHash compared to the other baselines on fairness at almost no performance cost.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Reference108 articles.

1. 2015. COMPAS Recidivism Risk Score Data and Analysis. www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis.

2. Fast hashing with strong concentration bounds

3. Non-empty Bins with Simple Tabulation Hashing

4. Subsets and Supermajorities: Optimal Hashing-based Set Similarity Search

5. Fair hierarchical clustering;Ahmadian Sara;Advances in Neural Information Processing Systems,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3