Affiliation:
1. Ludwig-Maximilians-Universität München
2. University of Hong Kong
3. Hong Kong University of Science and Technology
Abstract
Nearest neighbor (NN) queries in trajectory databases have received significant attention in the past, due to their applications in spatio-temporal data analysis. More recent work has considered the realistic case where the trajectories are uncertain; however, only simple uncertainty models have been proposed, which do not allow for accurate probabilistic search. In this paper, we fill this gap by addressing probabilistic nearest neighbor queries in databases with uncertain trajectories modeled by stochastic processes, specifically the Markov chain model. We study three nearest neighbor query semantics that take as input a query state or trajectory
q
and a time interval, and theoretically evaluate their runtime complexity. Furthermore we propose a sampling approach which uses Bayesian inference to guarantee that sampled trajectories conform to the observation data stored in the database. This sampling approach can be used in Monte-Carlo based approximation solutions. We include an extensive experimental study to support our theoretical results.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献