Framework to process vehicles uncertain locations for intelligent transportation

Author:

Abdalla Mohammed1,Islam Abdullah2,Ali Mohamed3,Hendawi Abdeltawab2

Affiliation:

1. Faculty of Computers and Artificial Intelligence, Beni-Suef University, Egypt

2. Department of Computer Science and Statistics, University of Rhode Island, USA

3. Institute of Technology, University of Washington, USA

Abstract

Many factors affect the precision and accuracy of location data. These factors include, but not limited to, environmental obstructions (e.g., high buildings and forests), hardware issues (e.g., malfunctioning and poor calibration), and privacy concerns (e.g., users denying consent to fine-grained location tracking). These factors lead to uncertainty about users’ location which in turn affects the quality of location-aware services. This paper proposes a novel framework called UMove, which stands for uncertain movements, to manage the trajectory of moving objects under location uncertainty. The UMove framework employs the connectivity (i.e., links between edges) and constraints (i.e., travel time and distance) on road network graphs to reduce the uncertainty of the object’s past, present, and projected locations. To accomplish this, UMove incorporates (i) a set-based pruning algorithm to reduce or eliminate uncertainty from imprecise trajectories; and (ii) a wrapper that can extend user-defined probability models designed to predict future locations of moving objects under uncertainty. Intensive experimental evaluations based on real data sets of GPS trajectories collected by Didi Chuxing in China prove the efficiency of the proposed UMove framework. In terms of accuracy, for past exact-location inference, UMove achieves rates from 88% to 97% for uncertain regions with sizes of 75 meters and 25 meters respectively; for future exact-location inference, accuracy rates reach up to 72% and 82% for 75 meters and 25 meters of uncertain regions.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3