Trident

Author:

Herodotou Herodotos1,Kakoulli Elena1

Affiliation:

1. Cyprus University of Technology, Limassol, Cyprus

Abstract

The recent advancements in storage technologies have popularized the use of tiered storage systems in data-intensive compute clusters. The Hadoop Distributed File System (HDFS), for example, now supports storing data in memory, SSDs, and HDDs, while OctopusFS and hatS offer fine-grained storage tiering solutions. However, the task schedulers of big data platforms (such as Hadoop and Spark) will assign tasks to available resources only based on data locality information, and completely ignore the fact that local data is now stored on a variety of storage media with different performance characteristics. This paper presents Trident, a principled task scheduling approach that is designed to make optimal task assignment decisions based on both locality and storage tier information. Trident formulates task scheduling as a minimum cost maximum matching problem in a bipartite graph and uses a standard solver for finding the optimal solution. In addition, Trident utilizes two novel pruning algorithms for bounding the size of the graph, while still guaranteeing optimality. Trident is implemented in both Spark and Hadoop, and evaluated extensively using a realistic workload derived from Facebook traces as well as an industry-validated benchmark, demonstrating significant benefits in terms of application performance and cluster efficiency.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Spark Optimizer for Adaptive, Fine-Grained Parameter Tuning;Proceedings of the VLDB Endowment;2024-07

2. Cost-based Data Prefetching and Scheduling in Big Data Platforms over Tiered Storage Systems;ACM Transactions on Database Systems;2023-11-13

3. S/C: Speeding up Data Materialization with Bounded Memory;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

4. Rotary: A Resource Arbitration Framework for Progressive Iterative Analytics;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

5. Fine-grained modeling and optimization for intelligent resource management in big data processing;Proceedings of the VLDB Endowment;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3