GlassDB: An Efficient Verifiable Ledger Database System Through Transparency

Author:

Yue Cong1,Dinh Tien Tuan Anh2,Xie Zhongle3,Zhang Meihui4,Chen Gang3,Ooi Beng Chin1,Xiao Xiaokui1

Affiliation:

1. National University of Singapore

2. Deakin University

3. Zhejiang University

4. Beijing Institute of Technology

Abstract

Verifiable ledger databases protect data history against malicious tampering. Existing systems, such as blockchains and certificate transparency, are based on transparency logs --- a simple abstraction allowing users to verify that a log maintained by an untrusted server is append-only. They expose a simple key-value interface without transactions. Building a practical database from transparency logs, on the other hand, remains a challenge. In this paper, we explore the design space of verifiable ledger databases along three dimensions: abstraction, threat model, and performance. We survey existing systems and identify their two limitations, namely, the lack of transaction support and the inferior efficiency. We then present GlassDB, a distributed database system that addresses these limitations under a practical threat model. GlassDB inherits the verifiability of transparency logs, but supports transactions and offers high performance. It extends a ledgerlike key-value store with a data structure for efficient proofs, and adds a concurrency control mechanism for transactions. GlassDB batches independent operations from concurrent transactions when updating the core data structures. In addition, we design a new benchmark for evaluating verifiable ledger databases, by extending YCSB and TPC-C benchmarks. Using this benchmark, we compare GlassDB against four baselines: reimplemented versions of three verifiable databases, and a verifiable map backed by a transparency log. Experimental results demonstrate that GlassDB is an efficient, transactional, and verifiable ledger database system.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference45 articles.

1. Lindsey Allen et al. 2019 . Veritas: Shared Verifiable Databases and Tables in the Cloud. In CIDR. 1--9. Lindsey Allen et al. 2019. Veritas: Shared Verifiable Databases and Tables in the Cloud. In CIDR. 1--9.

2. Amazon. 2019. Amazon Quantum Ledger Database. https://aws.amazon.com/qldb/ Amazon. 2019. Amazon Quantum Ledger Database. https://aws.amazon.com/qldb/

3. Elli Androulaki , Artem Barger , Vita Bortnikov , Christian Cachin , Konstantinos Christidis , Angelo De Caro , David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, et al. 2018 . Hyperledger fabric: a distributed operating system for permissioned blockchains. In EuroSys . 1--15. Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, et al. 2018. Hyperledger fabric: a distributed operating system for permissioned blockchains. In EuroSys. 1--15.

4. Panagiotis Antonopoulos , Raghav Kaushik , Hanuma Kodavalla , Sergio Rosales Aceves , Reilly Wong, Jason Anderson, and Jakub Szymaszek. 2021 . SQL Ledger: Cryptographically Verifiable Data in Azure SQL Database. In SIGMOD. 2437--2449. Panagiotis Antonopoulos, Raghav Kaushik, Hanuma Kodavalla, Sergio Rosales Aceves, Reilly Wong, Jason Anderson, and Jakub Szymaszek. 2021. SQL Ledger: Cryptographically Verifiable Data in Azure SQL Database. In SIGMOD. 2437--2449.

5. Arvind Arasu , Ken Eguro , Raghav Kaushik , Donald Kossmann , Pingfan Meng , Vineet Pandey , and Ravi Ramamurthy . 2017 . Concerto: A High Concurrency Key-Value Store with Integrity. In SIGMOD. 251--266. Arvind Arasu, Ken Eguro, Raghav Kaushik, Donald Kossmann, Pingfan Meng, Vineet Pandey, and Ravi Ramamurthy. 2017. Concerto: A High Concurrency Key-Value Store with Integrity. In SIGMOD. 251--266.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3