DELTA: A Modular, Transparent, and Efficient Synchronization of DLTs and Databases

Author:

Fernández‐Bravo Peñuela F. Javier1ORCID,Arjona Aroca Jordi1,Muñoz‐Escoí Francesc D.2ORCID,Yatsyk Gavrylyak Yuriy1,Illán García Ismael1,Bernabéu‐Aubán José M.2

Affiliation:

1. Distributed Systems Instituto Tecnológico de Informática València Spain

2. Department of Computer Systems and Computation Universitat Politècnica de València València Spain

Abstract

ABSTRACTBesides cryptocurrencies, DLTs may be also exploited in enterprise systems operated by a consortium of organizations. Their interaction takes usually place on a permissioned blockchain network that holds a set of data to be queried frequently. In this scope, the main problem of DLTs is their unsuitability for a fast service of complex queries on those data. In order to solve this issue, many proposals dump the ledger contents onto databases that, because of their own goals and design, are already optimized for the execution of those queries. Unfortunately, many of those proposals assume that the data to be queried consist in only a block or (cryptocurrency‐related) transaction history. However, those organization consortiums commonly store other structured business‐related information in the DLT, and there is an evident lack of support for querying that other kind of structured data. To remedy those problems, DELTA synchronizes, with minimal overhead, the DLT state into a database, providing (1) a modular architecture with event‐based handling of DLT updates that supports different DLTs and databases, (2) a transparent management, since DLT end users do not need to learn or use any new API in order to handle that synchronization (i.e., those users still rely on the original interface provided by their chosen DLT), (3) the efficient execution of complex queries on those structured data. Thus, DELTA reduces query times up to five orders of magnitude, depending on the DLT and the database, compared to queries directed to the ledger nodes.

Funder

Horizon 2020 Framework Programme

Publisher

Wiley

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3