Hierarchical core maintenance on large dynamic graphs

Author:

Lin Zhe1,Zhang Fan2,Lin Xuemin3,Zhang Wenjie4,Tian Zhihong2

Affiliation:

1. East China Normal University

2. Guangzhou University

3. University of New South Wales, East China Normal University

4. University of New South Wales

Abstract

The model of k -core and its decomposition have been applied in various areas, such as social networks, the world wide web, and biology. A graph can be decomposed into an elegant k -core hierarchy to facilitate cohesive subgraph discovery and network analysis. As many real-life graphs are fast evolving, existing works proposed efficient algorithms to maintain the coreness value of every vertex against structure changes. However, the maintenance of the k -core hierarchy in existing studies is not complete because the connections among different k -cores in the hierarchy are not considered. In this paper, we study hierarchical core maintenance which is to compute the k -core hierarchy incrementally against graph dynamics. The problem is challenging because the change of hierarchy may be large and complex even for a slight graph update. In order to precisely locate the area affected by graph dynamics, we conduct in-depth analyses on the structural properties of the hierarchy, and propose well-designed local update techniques. Our algorithms significantly outperform the baselines on runtime by up to 3 orders of magnitude, as demonstrated on 10 real-world large graphs.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Algorithm for Finding Optimal k-Core in Attribute Networks;Applied Sciences;2024-02-02

2. Efficient Core Maintenance in Large Bipartite Graphs;Proceedings of the ACM on Management of Data;2023-11-13

3. Improving the core resilience of real-world hypergraphs;Data Mining and Knowledge Discovery;2023-08-09

4. Parallel Order-Based Core Maintenance in Dynamic Graphs;Proceedings of the 52nd International Conference on Parallel Processing;2023-08-07

5. Quantifying Node Importance over Network Structural Stability;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3