An Algorithm for Finding Optimal k-Core in Attribute Networks

Author:

Liu Jing12,Zhong Yong12

Affiliation:

1. Chengdu Institute of Computer Applications, Chinese Academy of Sciences, Chengdu 610299, China

2. School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

As a structural indicator of dense subgraphs, k-core has been widely used in community search due to its concise and efficient calculation. Many community search algorithms have been expanded on the basis of k-core. However, relevant algorithms often set k values based on empirical analysis of datasets or require users to input manually. Once users are not familiar with the graph network structure, they may miss the optimal solution due to an improper k setting. Especially in attribute social networks, characterizing communities with only k-cores may lead to a lack of semantic interpretability of communities. Consequently, this article proposes a method for identifying the optimal k-core with the greatest attribute score in the attribute social network as the target community. The difficulty of the problem is that the query needs to integrate both structural and textual indicators of the community while fully considering the diversity of attribute scoring functions. To effectively reduce computational costs, we incorporate the topological characteristics of the k-core and the attribute characteristics of entities to construct a hierarchical forest. It is worth noting that we name tree nodes in a way similar to pre-order traversal and can maintain the order of all tree nodes during the forest creation process. In such an attribute forest, it is possible to quickly locate the initial solution containing all query vertices and reuse intermediate results during the process of expanding queries. We conducted effectiveness and performance experiments on multiple real datasets. As the results show, attribute scoring functions are not monotonic, and the algorithm proposed in this paper can avoid scores falling into local optima. With the help of the attribute k-core forest, the actual query time of the Advanced algorithm has improved by two orders of magnitude compared to the BaseLine algorithm. In addition, the average F1 score of our target community has increased by 2.04 times and 26.57% compared to ACQ and SFEG, respectively.

Funder

Sichuan Sciences and Technology Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3