GENETIC EVALUATION FOR SEEDLING TRAITS OF MAIZE AND WHEAT UNDER BIOGAS WASTEWATER, SEWAGE WATER AND DROUGHT STRESS CONDITIONS

Author:

Balqees N,Ali Q,Malik A

Abstract

Cereals grains have feed mankind since their domestication thousands of years ago and remained the most important source of calories for the majority of human population. Wheat (Triticum aestivum L.) and Maize (Zea mays L.) are used as staple food for more than 50% of world population. For evaluation of wheat and maize genotype under biogas wastewater, sewage water and drought stress, an experiment was conducted in the greenhouse of Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan. The treatments of biogas wastewater, sewage water and drought for maize and wheat genotypes were kept as following T1: control (normal irrigation condition) T2 (sewage water 100ml), T3 (biogas wastewater 100ml), T4 (drought 75% (25ml water)), T5 (biogas 150ml) and T6 (sewage water 150ml) respectively). It was observed from the results that the performance of maize and wheat genotypes were highly variable under biogas wastewater, sewage water and drought treatments. The treatment of sewage water (150ml) and drought (75%) were found as the higher toxic treatments of maize and wheat which were predicted as they may cause to decrease in the photosynthetic rate, productivity and growth of plants. The significant correlation was found between root length and shoot length for both of the genotypes. It was found from the results that maize genotype (Raka-poshi) performed better under most of the stress treatments as compared with wheat genotype (Galaxy-2013) while the higher genetic advance and heritability were reported for maize genotype which revealed that the maize may used to grow for higher grain production under biogas wastewater, sewage water and drought stress conditions.

Publisher

Medeye Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3