Abstract
Cereals grains have feed mankind since their domestication thousands of years ago and remained the most important source of calories for the majority of human population. Wheat (Triticum aestivum L.) and Maize (Zea mays L.) are used as staple food for more than 50% of world population. For evaluation of wheat and maize genotype under biogas wastewater, sewage water and drought stress, an experiment was conducted in the greenhouse of Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan. The treatments of biogas wastewater, sewage water and drought for maize and wheat genotypes were kept as following T1: control (normal irrigation condition) T2 (sewage water 100ml), T3 (biogas wastewater 100ml), T4 (drought 75% (25ml water)), T5 (biogas 150ml) and T6 (sewage water 150ml) respectively). It was observed from the results that the performance of maize and wheat genotypes were highly variable under biogas wastewater, sewage water and drought treatments. The treatment of sewage water (150ml) and drought (75%) were found as the higher toxic treatments of maize and wheat which were predicted as they may cause to decrease in the photosynthetic rate, productivity and growth of plants. The significant correlation was found between root length and shoot length for both of the genotypes. It was found from the results that maize genotype (Raka-poshi) performed better under most of the stress treatments as compared with wheat genotype (Galaxy-2013) while the higher genetic advance and heritability were reported for maize genotype which revealed that the maize may used to grow for higher grain production under biogas wastewater, sewage water and drought stress conditions.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献