Author:
Molano Luis Alejandro Molano
Abstract
UDC 517.9
Let
(
u
,
v
)
be a pair of quasidefinite and symmetric linear functionals with
{
P
n
}
n
≥
0
and
{
Q
n
}
n
≥
0
as respective sequences of monic orthogonal polynomial (SMOP). We define a sequence of monic polynomials
{
R
n
}
n
≥
0
as follows:
P
n
+
2
'
(
x
)
n
+
2
+
b
n
P
n
'
(
x
)
n
-
Q
n
+
1
(
x
)
=
d
n
R
n
-
1
(
x
)
,
n
≥
1.
We give necessary and sufficient conditions for
{
R
n
}
n
≥
0
to be orthogonal with respect to a quasidefinite linear functional
w
.
In addition, we consider the case where
{
P
n
}
n
≥
0
and
{
Q
n
}
n
≥
0
are monic Chebyshev polynomials of the first and second kinds, respectively, and study the relative outer asymptotics of Sobolev polynomials orthogonal with respect to the Sobolev inner product
〈
p
,
q
〉
S
=
∫
-1
1
p
q
(
1
-
x
2
)
-
1
/
2
ⅆ
x
+
λ
1
∫
-1
1
p
'
q
'
(
1
-
x
2
)
1
/
2
ⅆ
x
+
λ
2
∫
-1
1
p
'
'
q
'
'
ⅆ
μ
(
x
)
,
where
μ
is a positive Borel measure associated with
w
and
λ
1
,
λ
2
>
0
,
λ
2
is a linear polynomial of
λ
1
.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)
Reference29 articles.
1. M. Abramowitz, I. A. Stegun (Eds.), Handbook of mathematical functions, 10th ed., Dover, New York (1972).
2. M. Alfaro, F. Marcellán, M. L. Rezola, Orthogonal polynomials on Sobolev spaces: old and new directions, J.~Comput. and Appl. Math., 48, 113–131 (1993).
3. M. Alfaro, A. Peña, J. Petronilho, M. L. Rezola, On linearly related orthogonal polynomials and their functionals, J. Math. Anal. and Appl., 287, 307–319 (2003).
4. A. Ali Kheli, A. Belkebir, M. N. Bouras, On a new combination of orthogonal polynomials sequences, Vladikavkaz Math. J., 24, № 3, 5–20 (2022).
5. D. Barrios, G. López Lagomasino, Asymptotic behavior of solutions of general three term recurrence relations, Adv. Comput. Math., 26, 9–37 (2007).