Stationary Flows Revisited

Author:

Fordy Allan P., ,Huang Qing,

Abstract

In this paper we revisit the subject of stationary flows of Lax hierarchies of a coupled KdV class. We explain the main ideas in the standard KdV case and then consider the dispersive water waves (DWW) case, with respectively 2 and 3 Hamiltonian representations. Each Hamiltonian representation gives us a different form of stationary flow. Comparing these, we construct Poisson maps, which, being non-canonical, give rise to bi-Hamiltonian representations of the stationary flows. An alternative approach is to use the Miura maps, which we do in the case of the DWW hierarchy, which has two ''modifications''. This structure gives us 3 sequences of Poisson related stationary flows. We use the Poisson maps to build a tri-Hamiltonian representation of each of the three stationary hierarchies. One of the Hamiltonian representations allows a multi-component squared eigenfunction expansion, which gives N degrees of freedom Hamiltonians, with first integrals. A Lax representation for each of the stationary flows is derived from the coupled KdV matrices. In the case of 3 degrees of freedom, we give a generalisation of our Lax matrices and Hamiltonian functions, which allows a connection with the rational Calogero-Moser (CM) system. This gives a coupling of the CM system with other potentials, along with a Lax representation. We present the particular case of coupling one of the integrable Hénon-Heiles systems to CM.

Publisher

SIGMA (Symmetry, Integrability and Geometry: Methods and Application)

Subject

Geometry and Topology,Mathematical Physics,Analysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stationary coupled KdV systems and their Stäckel representations;Studies in Applied Mathematics;2024-04-30

2. Stationary coupled KdV hierarchies and related Poisson structures;Journal of Geometry and Physics;2024-03

3. On rotation invariant integrable systems;Izvestiya: Mathematics;2024

4. Об инвариантных относительно вращений интегрируемых системах;Известия Российской академии наук. Серия математическая;2024

5. Stäckel representations of stationary Kdv systems;Reports on Mathematical Physics;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3