On rotation invariant integrable systems

Author:

Tsiganov Andrey Vladimirovich1

Affiliation:

1. Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract

The problem of finding the first integrals of the Newton equations in the $n$-dimensional Euclidean space is reduced to that of finding two integrals of motion on the Lie algebra $\mathrm{so}(4)$ which are invariant under $m\geq n-2$ rotation symmetry fields. As an example, we obtain several families of integrable and superintegrable systems with first, second, and fourth-degree integrals of motion in the momenta. The corresponding Hamilton-Jacobi equation does not admit separation variables in any of the known curvilinear orthogonal coordinate systems in the Euclidean space.

Funder

Russian Science Foundation

Publisher

Steklov Mathematical Institute

Reference33 articles.

1. Integrability and non-integrability in Hamiltonian mechanics

2. Tensor invariants and integration of differential equations

3. Quadratic conservation laws for equations of mathematical physics

4. Sur l'intégration logique des équations de la dynamique à deux variables. Forces conservatives. Intégrales cubiques. Mouvements dans le plan;J. Drach;C. R. Acad. Sci. Paris,1935

5. Direct methods for the search of the second invariant

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3