Modeling of probable maximum values in autonomous driving

Author:

Bakucz Peter,Kiss Gabor

Abstract

In this paper, we approximate the probable maximum (very rare, extremal) values of highly autonomous driving sensor signals by reviewing two methods based on dynamic time series scaling and multifractal statistics.The article is a significantly revised and modified version of the conference material ("Determination of extreme values ​​in autonomous driving based on multifractals and dynamic scaling") presented at the conference "2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics, SACI". The method of dynamic scaling is originally derived from statistical physics and approximates the critical interface phenomena. The time series of the vibration signal of the corner radar can be considered as a fractal surface and grow appropriately for a given scale-inverse dynamic equation. In the second method we initiate, that multifractal statistics can be useful in searching for statistical analog time series that have a similar multifractal spectrum as the original sensor time series.

Publisher

University of Craiova

Reference23 articles.

1. Szabó, J, - Bakucz, P. 2021: Determination of extreme values in autonomous driving based on multifractals and dynamic scaling. In 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI).

2. Mathworks Inc.: Matlab 2020b computer algebra software. System Identification Toolbox.

3. EE Automotive 5th generation of radar sensors offers significantly higher resolution https://www.eenewsautomotive.com/news/5th-generation-radar-sensors-offers-significantly-higher-resolution

4. Anderson J. M. Et al. 2016: Autonomous vehicle technology. Rand Corporation 2016. pp 214.

5. Goldberg, C., Buch, H., Moseholm, L., Weeke, E., Grana 27, 209, 1988.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3