Author:
Naidu P.Bhaskar,Anusha Pulakanam,Naveena Gothula,Anusha Thota,Balaji Chimakurthi
Abstract
Object detection system using Convolutional Neural Network(CNN) that can accurately identify and classify objects in videos. The purpose of object detection using CNN to enhance technology such as security cameras, smart devices by enabling them to identify and understand objects in videos. Object detection using CNN is a fascinating filed in computer vision. Detection can be difficult since there are all kinds of variations in orientation, lighting, background that can result in completely different videos of the very same object. Now with the advance of deep learning and neural network, we can finally tackle such problems without coming up with various heuristics real-time. The project “Object detection using CNN for video streaming” detects objects efficiently based on CNN algorithm and apply the algorithm on image or video data. In this project, we develop a technique to identify an object considering the deep learning pre-trained model MobileNet for Single Shot Multi-Box Detector (SSD). This algorithm is used for real-time detection and for webcam, which detects the objects in a video stream. Therefore, we use an object detection module that can detect what is in the video stream. In order to implement the module, we combine the MobileNet and the SSD framework for a fast and efficient deep learning-based method of object detection. The main purpose of our research is to elaborate the accuracy of an object detection method SSD and the importance of pre-trained deep learning model MobileNet. The experimental results show that the Average Precision (AP) of the algorithm to detect different classes as car, person and chair is 99.76%, 97.76% and 71.07%, respectively. The main objective of our project is to make clear the object detecting accuracy. The existing methods are Region Based Convolutional Neural Network(R-CNN) and You Only Look Once(YOLO).R-CNN could not pushed real time speed though its system is updated and new versions of it are deployed and YOLO network is popular but YOLO is to struggle to detect objects grouped close together, especially smaller ones. To avoid the drawbacks of these methods we proposed this model which included single shot multi-box detector (SSD), this algorithm is used for real time detection and Mobile-Net architecture.
Publisher
International Journal of Innovative Science and Research Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prediction of Probable Allergens in Food Items Using Convolutional Neural Networks;International Journal of Innovative Science and Research Technology (IJISRT);2024-04-29