Prediction of Probable Allergens in Food Items Using Convolutional Neural Networks

Author:

R. Harshavardan.,S. Kanish.,Adityan. G Madhav Suta,Gopalakrishnan Rathi

Abstract

Food monitoring and nutritional analysis play a crucial role in addressing allergen-related health issues, and their importancecontinues to grow in our daily lives. In this study, we utilizeda convolutional neural network (CNN) to recognize and analyze food images, assess the nutritional content of dishes, and provide information on potential allergens. Identifying food items from images poses a significant challenge due to the wide variety of foods available. To address this, we leveraged the Logmeal API, which utilizes CNN to identify various types of meals, their ingredients, and potential allergens.

Publisher

International Journal of Innovative Science and Research Technology

Reference16 articles.

1. “Food Allergies:The Basics” Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria,2017

2. A Framework to Estimate the Nutritional Value of Food in Real Time Using Deep Learning Techniques. IEEE Access, 7 (1).

3. Effective Learning and Classification using Random Forest Algorithm 1Vrushali Y Kulkarni, 2Pradeep K Sinha International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 11, May 2014.

4. W R SAM EMMANUEL and S JASMINE MINIJA” Fuzzy clustering and Whale-based neural network to food recognition and calorie estimation for daily dietary assessment” Sådhanå 2018.

5. Amatul Bushra Akhil, Farzana Akter Tania Khatun & Mohammad Shorif Uddin “Recognition and Classification of Fast Food Images” Global Journal of Computer Science and Technology 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3