Impacts of Genetic Algorithm Parameters on the Solution Performance for the Uniform Circular Antenna Array Pattern Synthesis Problem

Author:

Yaman F.,E. Ylmaz A.

Abstract

In this paper, the uniform circular antenna array pattern synthesis problem is solved by means of the real coded genetic algorithm (GA). At the same time, the impacts of the mutation rate and the crossover position on the GAperformance are also investigated. For this purpose, a circular antenna array with uniformly spaced isotropic elements having identical excitation amplitudes is used as a model. Unlike the conventional GA (with fixed mutation rate and random crossover positions), typical GA implementations with variable mutation rate and restricted crossover position are considered for performance improvement. In conclusion, for the specific problem, decreasing mutation rate with negative derivative is observed to be outperforming the implementations with different mutation rate behaviors. Moreover, regarding the crossover technique, it is observed that imposing some restrictions on the crossover positions (rather than fully random position selection) yields better solutions.

Publisher

Universidad Nacional Autonoma de Mexico

Subject

General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A rockburst prediction model based on extreme learning machine with improved Harris Hawks optimization and its application;Tunnelling and Underground Space Technology;2023-04

2. Three‐phase adaptive differential evolution for antenna array synthesis;International Journal of Numerical Modelling: Electronic Networks, Devices and Fields;2021-02-11

3. Multi-Objective Feature Subset Selection using Non-dominated Sorting Genetic Algorithm;Journal of Applied Research and Technology;2015-02

4. Distributed Selection of the Optimal Sizes of Analog Unity Gain Cells by Fuzzy Set Intersection;Advances in Computer and Electrical Engineering;2015

5. An Optimization Model for the Vehicle Routing Problem in Multi-product Frozen Food Delivery;Journal of Applied Research and Technology;2014-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3