A rockburst prediction model based on extreme learning machine with improved Harris Hawks optimization and its application
Author:
Publisher
Elsevier BV
Subject
Geotechnical Engineering and Engineering Geology,Building and Construction
Reference101 articles.
1. Knowledge-based and data-driven fuzzy modeling for rockburst prediction;Adoko;Int. J. Rock Mech. Min. Sci.,2013
2. Statistical assessment of rock burst potential and contributions of considered predictor variables in the task;Afraei;Tunn. Undergr. Sp. Tech.,2018
3. Developing intelligent classification models for rock burst prediction after recognizing significant predictor variables, Section 1: Literature review and data preprocessing procedure;Afraei;Tunn. Undergr. Sp. Tech.,2019
4. Developing intelligent classification models for rock burst prediction after recognizing significant predictor variables, Section 2: Designing classifiers;Afraei;Tunn. Undergr. Sp. Tech.,2019
5. Rockburst Hazard Prediction in Underground Projects Using Two Intelligent Classification Techniques: A Comparative Study;Ahmad;Symmetry-Basel.,2021
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Predicting short-term rockburst intensity using a weighted probability stacking model with optimal feature selection and Bayesian hidden layer;Tunnelling and Underground Space Technology;2024-11
2. Probabilistic assessment of rockburst risk in TBM-excavated tunnels with multi-source data fusion;Tunnelling and Underground Space Technology;2024-10
3. Application of artificial intelligence in coal mine ultra-deep roadway engineering—a review;Artificial Intelligence Review;2024-08-19
4. Risk prediction of coal mine rock burst based on machine learning and feature selection algorithm;Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards;2024-05-30
5. A review of tunnel rockburst prediction methods based on static and dynamic indicators;Natural Hazards;2024-05-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3