Affiliation:
1. Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016 and
2. Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY, 10016
Abstract
Abstract
Here we report a new plasmid shuffle vector for forcing budding yeast (Saccharomyces cerevisiae) to incorporate a new genetic pathway in place of a native pathway – even an essential one – while maintaining low false positive rates (less than 1 in 108 per cell). This plasmid, dubbed “Superloser,” was designed with reduced sequence similarity to commonly used yeast plasmids (i.e., pRS400 series) to limit recombination, a process that in our experience leads to retention of the yeast gene(s) instead of the desired gene(s). In addition, Superloser utilizes two orthogonal copies of the counter-selectable marker URA3 to reduce spontaneous 5-fluoroorotic acid resistance. Finally, the CEN/ARS sequence is fused to the GAL1-10 promoter, which disrupts plasmid segregation in the presence of the sugar galactose, causing Superloser to rapidly be removed from a population of cells. We show one proof-of-concept shuffling experiment: swapping yeast’s core histones out for their human counterparts. Superloser is especially useful for forcing yeast to use highly unfavorable genes, such as human histones, as it enables plating a large number of cells (1.4x109) on a single 10 cm petri dish while maintaining a very low background. Therefore, Superloser is a useful tool for yeast geneticists to effectively shuffle low viability genes and/or pathways in yeast that may arise in as few as 1 in 108 cells.
Publisher
Oxford University Press (OUP)
Subject
Genetics(clinical),Genetics,Molecular Biology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献