Linking Genetics to Structural Biology: Complex Heterozygosity Screening with Actin Alanine Scan Alleles Identifies Functionally Related Surfaces on Yeast Actin

Author:

DiPrima Stephanie1,Haarer Brian2,Viggiano Susan2,Pons Carles1,Myers Chad L1,Amberg David C12

Affiliation:

1. Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455

2. Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210

Abstract

Abstract Previous genome-level genetic interaction screens with the single essential actin gene of yeast identified 238 nonessential genes that upon deletion result in deleterious, digenic complex haploinsufficiences with an actin null allele. Deletion alleles of these 238 genes were tested for complex heterozygous interactions with 32 actin alanine scan alleles, which target clusters of residues on the surface of actin. A total of 891 deleterious digenic combinations were identified with 203 of the 238 genes. Two-dimensional hierarchical cluster analysis of the interactions identified nine distinct groups, and the alleles within clusters tended to affect localized regions on the surface of actin. The mutants in one cluster all affect electrostatic interactions between stacked subunits in the long pitch helix of the actin filament. A second cluster that contains the most highly interactive alleles may disrupt the tropomyosin/myosin system, as one of the mutants in that cluster cannot support Type V myosin-dependent movement of secretory vesicles in haploids and causes processivity defects in heterozygous diploids. These examples suggest the clusters represent mutations with shared protein−protein interaction defects. These results show that complex heterozygous interaction screens have benefit for detecting actin-related genes and suggest that having actin filaments of mixed composition, containing both mutant and wild-type subunits, presents unique challenges to the cell.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3