Species-Level Deconvolution of Metagenome Assemblies with Hi-C–Based Contact Probability Maps

Author:

Burton Joshua N,Liachko Ivan,Dunham Maitreya J1,Shendure Jay

Affiliation:

1. Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065

Abstract

Abstract Microbial communities consist of mixed populations of organisms, including unknown species in unknown abundances. These communities are often studied through metagenomic shotgun sequencing, but standard library construction methods remove long-range contiguity information; thus, shotgun sequencing and de novo assembly of a metagenome typically yield a collection of contigs that cannot readily be grouped by species. Methods for generating chromatin-level contact probability maps, e.g., as generated by the Hi-C method, provide a signal of contiguity that is completely intracellular and contains both intrachromosomal and interchromosomal information. Here, we demonstrate how this signal can be exploited to reconstruct the individual genomes of microbial species present within a mixed sample. We apply this approach to two synthetic metagenome samples, successfully clustering the genome content of fungal, bacterial, and archaeal species with more than 99% agreement with published reference genomes. We also show that the Hi-C signal can secondarily be used to create scaffolded genome assemblies of individual eukaryotic species present within the microbial community, with higher levels of contiguity than some of the species’ published reference genomes.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3