The Impact of Open Pollination on the Structural Evolutionary Dynamics, Meiotic Behavior, and Fertility of Resynthesized Allotetraploid Brassica napus L.

Author:

Rousseau-Gueutin Mathieu1,Morice Jérôme1,Coriton Olivier1,Huteau Virginie1,Trotoux Gwenn1,Nègre Sylvie1,Falentin Cyril1,Deniot Gwennaëlle1,Gilet Marie1,Eber Frédérique1,Pelé Alexandre1,Vautrin Sonia2,Fourment Joëlle2,Lodé Maryse1,Bergès Hélène2,Chèvre Anne-Marie1

Affiliation:

1. Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Institut National De La Recherche Agronomique (INRA), Université de Rennes 1, 35650 Le Rheu, France

2. French Plant Genomic Resource Center (CNRGV), INRA, 31326 Castanet Tolosan Cedex, France

Abstract

Abstract Allopolyploidy, which results from the merger and duplication of two divergent genomes, has played a major role in the evolution and diversification of flowering plants. The genomic changes that occur in resynthesized or natural neopolyploids have been extensively studied, but little is known about the effects of the reproductive mode in the initial generations that may precede its successful establishment. To truly reflect the early generations of a nascent polyploid, two resynthesized allotetraploid Brassica napus populations were obtained for the first time by open pollination. In these populations, we detected a much lower level of aneuploidy (third generation) compared with those previously published populations obtained by controlled successive selfing. We specifically studied 33 resynthesized B. napus individuals from our two open pollinated populations, and showed that meiosis was affected in both populations. Their genomes were deeply shuffled after allopolyploidization: up to 8.5 and 3.5% of the C and A subgenomes were deleted in only two generations. The identified deletions occurred mainly at the distal part of the chromosome, and to a significantly greater extent on the C rather than the A subgenome. Using Fluorescent In Situ Hybridization (BAC-FISH), we demonstrated that four of these deletions corresponded to fixed translocations (via homeologous exchanges). We were able to evaluate the size of the structural variations and their impact on the whole genome size, gene content, and allelic diversity. In addition, the evolution of fertility was assessed, to better understand the difficulty encountered by novel polyploid individuals before the putative formation of a novel stable species.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3