Near-Absent Levels of Segregational Variation Suggest Limited Opportunities for the Introduction of Genetic Variation Via Homeologous Chromosome Pairing in Synthetic Neoallotetraploid Mimulus

Author:

Modliszewski Jennifer L1,Willis John H1

Affiliation:

1. Department of Biology, Duke University, Durham, North Carolina 27708

Abstract

Abstract Genetic variation is the fundamental medium of evolution. In allopolyploids, which are the product of hybridization and whole genome duplication, if homologous chromosomes always pair, then all descendants of a single diploid F1 hybrid lineage will be genetically identical. Contrarily, genetic variation among initially isogenic lineages is augmented when homeologous chromosomes pair; this added variation may contribute to phenotypic evolution. Mimulus sookensis is a naturally occurring, small-flowered allotetraploid derived from the large-flowered Mimulus guttatus and small-flowered Mimulus nasutus. Because diploid F1 hybrids between M. guttatus and M. nasutus have large flowers, phenotypic evolution post-polyploidization is implied in M. sookensis. Here, we present genetic and phenotypic analyses of synthetic neoallotetraploid Mimulus derived from a cross between M. guttatus and M. nasutus. Genetic marker data from S2 and BC1N progeny suggest that chromosomes regularly pair with their homologous counterpart. By measuring the phenotype of synthetic neoallotetraploids, we demonstrate that polyploidization per se does not induce the small flowers of M. sookensis. Moreover, phenotypic measurements of synthetic allotetraploid F2s and S4 families suggest that rare homeologous recombination events have a negligible phenotypic effect in the first few generations. In total, the results are consistent with either exceedingly rare homeologous pairing and recombination or spontaneous fragment loss. The low levels of fragment loss and phenotypic variation in neoallotetraploids suggest that homeologous recombination after polyploidization is not a major mechanism of phenotypic evolution in M. sookensis. Rather, it may be that spontaneous mutations or epigenetic changes after allopolyploidization have driven phenotypic evolution in M. sookensis.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3