Fine Mapping and Physical Characterization of Two Linked Quantitative Trait Loci Affecting Milk Fat Yield in Dairy Cattle on BTA26

Author:

Gautier Mathieu12,Barcelona Rosa Roy1,Fritz Sébastien3,Grohs Cécile1,Druet Tom4,Boichard Didier4,Eggen André1,Meuwissen Theo H E25

Affiliation:

1. Laboratoire de Génétique Biochimique et Cytogénétique and

2. Department of Animal and Aquacultural Sciences and

3. Union Nationale des Coopératives d'Elevage et d'Insémination Animale, 75595 Paris, France

4. Station de Génétique Quantitative et Appliquée, INRA 78352 Jouy-en-Josas, France

5. Centre for Integrative Genetics, Agricultural University of Norway, N-1432 Aas, Norway and

Abstract

Abstract Previously, a highly significant QTL affecting fat yield and protein yield and mapped to the bovine BTA26 chromosome has been reported to segregate in the French Holstein cattle population. To confirm and refine the location of this QTL, the original detection experiment was extended by adding 12 new families and genotyping 25 additional microsatellite markers (including 11 newly developed markers). Data were then analyzed by an approach combining both linkage and linkage disequilibrium information, making it possible to identify two linked QTL separated by 20 cM corresponding to ∼29 Mb. The presence of a QTL affecting protein yield was confirmed but its position was found to be more telomeric than the two QTLunderlying fat yield. Each identified QTL affecting milk fat yield was physically mapped within a segment estimated to be <500 kb. Two strong functional candidate genes involved, respectively, in fatty acid metabolism and membrane permeability were found to be localized within this segment while other functional candidate genes were discarded. A haplotype comprising the favorable allele at each QTL position appears to be overrepresented in the artificial insemination bull population.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3