Estimating Realized Heritability in Panmictic Populations

Author:

Lstibůrek Milan1,Bittner Václav2,Hodge Gary R3,Picek Jan2,Mackay Trudy F C4

Affiliation:

1. Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 21 Praha 6, Czech Republic

2. Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec 1, Czech Republic

3. Camcore, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695

4. Department of Biological Sciences and Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695

Abstract

Abstract Narrow sense heritability (h2) is a key concept in quantitative genetics, as it expresses the proportion of the observed phenotypic variation that is transmissible from parents to offspring. h2 determines the resemblance among relatives, and the rate of response to artificial and natural selection. Classical methods for estimating h2 use random samples of individuals with known relatedness, as well as response to artificial selection, when it is called realized heritability. Here, we present a method for estimating realized h2 based on a simple assessment of a random-mating population with no artificial manipulation of the population structure, and derive SE of the estimates. This method can be applied to arbitrary phenotypic segments of the population (for example, the top-ranking p parents and offspring), rather than random samples. It can thus be applied to nonpedigreed random mating populations, where relatedness is determined from molecular markers in the p selected parents and offspring, thus substantially saving on genotyping costs. Further, we assessed the method by stochastic simulations, and, as expected from the mathematical derivation, it provides unbiased estimates of h2. We compared our approach to the regression and maximum-likelihood approaches utilizing Galton’s dataset on human heights, and all three methods provided identical results.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3