Quality Protein Maize Based on Reducing Sulfur in Leaf Cells

Author:

Planta Jose,Messing Joachim1

Affiliation:

1. Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854

Abstract

Abstract Low levels of the essential amino acids lysine (Lys) and methionine (Met) in a maize-based diet are a major cost to feed and food. Lys deficiency is due to the abundance of Lys-poor proteins in maize kernels. Although a maize mutant, opaque-2 (o2), has sufficient levels of Lys, its soft kernel renders it unfit for storage and transportation. Breeders overcame this problem by selecting quantitative trait loci (QTL) restoring kernel hardness in the presence of o2, a variety called Quality Protein Maize (QPM). Although at least one QTL acts by enhancing the expression of the γ-zein proteins, we could surprisingly achieve rebalancing of the Lys content and a vitreous kernel phenotype by targeting suppression of γ-zeins without the o2 mutant. Reduced levels of γ-zeins were achieved with RNA interference (RNAi). Another transgenic event, PE5 expresses the Escherichia coli enzyme 3′-phosphoadenosine-5′-phosphosulfate reductase involved in sulfate assimilation, specifically in leaves. The stacked transgenic events produce a vitreous endosperm, which has higher Lys level than the classical opaque W64Ao2 variant. Moreover, due to the increased sulfate reduction in the leaf, Met level is elevated in the seed. Such a combination of transgenes produces hybrid seeds superior to classical QPMs that would neither require a costly feed mix nor synthetic Met supplementation, potentially creating a novel and cost-effective means for improving maize nutritional quality.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference56 articles.

1. Coexpression of the maize δ-zein and β-zein genes results in stable accumulation of δ-zein in endoplasmic reticulum-derived protein bodies formed by β-zein.;Bagga;Plant Cell,1997

2. Variation in protein fractions and nitrogen metabolism of developing normal and opaque endosperm mutants of maize.;Balconi;Maydica,1998

3. Molecular characterization of the major maize embryo globulin encoded by the Glb1 gene.;Belanger;Plant Physiol.,1989

4. Genetic analysis of modified endosperm texture in the opaque-2 maize.;Belousov;Genetika,1987

5. Recurrent selection for transgene activity levels in maize results in proxy selection for a native gene with the same promoter.;Bodnar;PLoS One,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3