Interplay Between Histone H3 Lysine 56 Deacetylation and Chromatin Modifiers in Response to DNA Damage

Author:

Simoneau Antoine11,Delgoshaie Neda21,Celic Ivana3,Dai Junbiao34,Abshiru Nebiyu25,Costantino Santiago16,Thibault Pierre25,Boeke Jef D37,Verreault Alain28,Wurtele Hugo19

Affiliation:

1. Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada H1T 2M4

2. Institute for Research in Immunology and Cancer, Université de Montréal, Succursale Centre-Ville, Montreal, QC, Canada H3C 3J7

3. High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

4. School of Life Sciences, Tsinghua University, Beijing, China 100084

5. Département de Chimie, Université de Montréal, Succursale Centre-Ville, Montreal, QC, Canada H3C 3J7

6. Département d’ophtalmologie, Université de Montréal, Succursale Centre-Ville, Montreal, QC, Canada H3C 3J7

7. Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, New York 10016

8. Département de Pathologie et Biologie Cellulaire, Université de Montréal, Succursale Centre-Ville, Montreal, QC, Canada H3C 3J7

9. Département de Médecine, Université de Montréal, Succursale Centre-Ville, Montreal, QC, Canada H3C 3J7

Abstract

Abstract In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56Ac) is present in newly synthesized histones deposited throughout the genome during DNA replication. The sirtuins Hst3 and Hst4 deacetylate H3K56 after S phase, and virtually all histone H3 molecules are K56 acetylated throughout the cell cycle in hst3∆ hst4∆ mutants. Failure to deacetylate H3K56 causes thermosensitivity, spontaneous DNA damage, and sensitivity to replicative stress via molecular mechanisms that remain unclear. Here we demonstrate that unlike wild-type cells, hst3∆ hst4∆ cells are unable to complete genome duplication and accumulate persistent foci containing the homologous recombination protein Rad52 after exposure to genotoxic drugs during S phase. In response to replicative stress, cells lacking Hst3 and Hst4 also displayed intense foci containing the Rfa1 subunit of the single-stranded DNA binding protein complex RPA, as well as persistent activation of DNA damage–induced kinases. To investigate the basis of these phenotypes, we identified histone point mutations that modulate the temperature and genotoxic drug sensitivity of hst3∆ hst4∆ cells. We found that reducing the levels of histone H4 lysine 16 acetylation or H3 lysine 79 methylation partially suppresses these sensitivities and reduces spontaneous and genotoxin-induced activation of the DNA damage-response kinase Rad53 in hst3∆ hst4∆ cells. Our data further suggest that elevated DNA damage–induced signaling significantly contributes to the phenotypes of hst3∆ hst4∆ cells. Overall, these results outline a novel interplay between H3K56Ac, H3K79 methylation, and H4K16 acetylation in the cellular response to DNA damage.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3