Affiliation:
1. Department of Biology, University of Rochester, New York 14627
Abstract
Abstract
Two genes encoding protein components of the nuclear pore complex Nup160 and Nup96 cause lethality in F2-like hybrid genotypes between Drosophila simulans and Drosophila melanogaster. In particular, D. simulans Nup160 and Nup96 each cause inviability when hemizygous or homozygous in species hybrids that are also hemizygous (or homozygous) for the D. melanogaster X chromosome. The hybrid lethality of Nup160, however, is genetically complex, depending on one or more unknown additional factors in the autosomal background. Here we study the genetics and evolution of Nup160-mediated hybrid lethality in three ways. First, we test for variability in Nup160-mediated hybrid lethality within and among the three species of the D. simulans clade— D. simulans, D. sechellia, and D. mauritiana. We show that the hybrid lethality of Nup160 is fixed in D. simulans and D. sechellia but absent in D. mauritiana. Second, we explore how the hybrid lethality of Nup160 depends on other loci in the autosomal background. We find that D. simulans Nup160-mediated hybrid lethality does not depend on the presence of D. melanogaster Nup96, and we find that D. simulans and D. mauritiana are functionally differentiated at Nup160 as well as at other autosomal factor(s). Finally, we use population genetics data to show that Nup160 has experienced histories of recurrent positive selection both before and after the split of the three D. simulans clade species ∼240,000 years ago. Our genetic results suggest that a hybrid lethal Nup160 allele evolved before the split of the three D. simulans clade species, whereas the other autosomal factor(s) evolved more recently.
Publisher
Oxford University Press (OUP)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献