Nup96-Dependent Hybrid Lethality Occurs in a Subset of Species From the simulans Clade of Drosophila

Author:

Barbash Daniel A1

Affiliation:

1. Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853

Abstract

Abstract The cross of Drosophila melanogaster females to D. simulans males typically produces lethal F1 hybrid males. F1 male lethality is suppressed when the D. simulans Lhr1 hybrid rescue strain is used. Viability of these F1 males carrying Lhr1 is in turn substantially reduced when the hybrids are heterozygous for some mutant alleles of the D. melanogaster Nup96 gene. I show here that similar patterns of Nup96-dependent lethality occur when other hybrid rescue mutations are used to create F1 males, demonstrating that Nup96 does not reduce hybrid viability by suppressing the Lhr1 rescue effect. The penetrance of this Nup96-dependent lethality does not correlate with the penetrance of the F1 hybrid rescue, arguing that these two phenomena reflect genetically independent processes. D. simulans, together with two additional sister species, forms a clade that speciated after the divergence of their common ancestor from D. melanogaster. I report here that Nup96− reduces F1 viability in D. melanogaster hybrids with one of these sister species, D. sechellia, but not with the other, D. mauritiana. These results suggest that Nup96-dependent lethality evolved after the speciation of D. melanogaster from the common ancestor of the simulans clade and is caused by an interaction among Nup96, unknown gene(s) on the D. melanogaster X chromosome, and unknown autosomal gene(s), at least some of which have diverged in D. simulans and D. sechellia but not in D. mauritiana. The genetic properties of Nup96 are also discussed relative to other hybrid lethal genes.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3