Effect of Domestication on the Spread of the [PIN+] Prion in Saccharomyces cerevisiae

Author:

Kelly Amy C1,Busby Ben2,Wickner Reed B1

Affiliation:

1. Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892

2. National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892

Abstract

Abstract Prions (infectious proteins) cause fatal neurodegenerative diseases in mammals. In the yeast Saccharomyces cerevisiae, many toxic and lethal variants of the [PSI+] and [URE3] prions have been identified in laboratory strains, although some commonly studied variants do not seem to impair cell growth. Phylogenetic analysis has revealed four major clades of S. cerevisiae that share histories of two prion proteins and largely correspond to different ecological niches of yeast. The [PIN+] prion was most prevalent in commercialized niches, infrequent among wine/vineyard strains, and not observed in ancestral isolates. As previously reported, the [PSI+] and [URE3] prions are not found in any of these strains. Patterns of heterozygosity revealed genetic mosaicism and indicated extensive outcrossing among divergent strains in commercialized environments. In contrast, ancestral isolates were all homozygous and wine/vineyard strains were closely related to each other and largely homozygous. Cellular growth patterns were highly variable within and among clades, although ancestral isolates were the most efficient sporulators and domesticated strains showed greater tendencies for flocculation. [PIN+]-infected strains had a significantly higher likelihood of polyploidy, showed a higher propensity for flocculation compared to uninfected strains, and had higher sporulation efficiencies compared to domesticated, uninfected strains. Extensive phenotypic variability among strains from different environments suggests that S. cerevisiae is a niche generalist and that most wild strains are able to switch from asexual to sexual and from unicellular to multicellular growth in response to environmental conditions. Our data suggest that outbreeding and multicellular growth patterns adapted for domesticated environments are ecological risk factors for the [PIN+] prion in wild yeast.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference97 articles.

1. The sporulation and mating of brewing yeasts.;Anderson;J. Inst. Brew.,1975

2. Microbial cell individuality and the underlying sources of heterogeneity.;Avery;Nat. Rev. Microbiol.,2006

3. [PSI+] prion transmission barriers protect Saccharomyces cerevisiae from infection: intraspecies “species barriers.”;Bateman;Genetics,2012

4. Controlling the false discovery rate: a practical and powerful approach to multiple testing.;Benjamini;J. R. Stat. Soc. B,1995

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3