Best Prediction of the Additive Genomic Variance in Random-Effects Models

Author:

Schreck Nicholas1,Piepho Hans-Peter2,Schlather Martin13

Affiliation:

1. Research Group on Stochastics and its Applications, School of Business Informatics and Mathematics, University of Mannheim, 68159, Germany

2. Biostatistics Unit, Institute of Crop Science, University of Hohenheim, 70593 Stuttgart, Germany

3. Animal Breeding and Genetics Group, Center for Integrated Breeding Research, University of Goettingen, 37075, Germany

Abstract

Abstract The additive genomic variance in linear models with random marker effects can be defined as a random variable that is in accordance with classical quantitative genetics theory. Common approaches to estimate the genomic variance in random-effects linear models based on genomic marker data can be regarded as estimating the unconditional (or prior) expectation of this random additive genomic variance, and result in a negligence of the contribution of linkage disequilibrium (LD). We introduce a novel best prediction (BP) approach for the additive genomic variance in both the current and the base population in the framework of genomic prediction using the genomic best linear unbiased prediction (gBLUP) method. The resulting best predictor is the conditional (or posterior) expectation of the additive genomic variance when using the additional information given by the phenotypic data, and is structurally in accordance with the genomic equivalent of the classical additive genetic variance in random-effects models. In particular, the best predictor includes the contribution of (marker) LD to the additive genomic variance and possibly fully eliminates the missing contribution of LD that is caused by the assumptions of statistical frameworks such as the random-effects model. We derive an empirical best predictor (eBP) and compare its performance with common approaches to estimate the additive genomic variance in random-effects models on commonly used genomic datasets.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3