Genotype Imputation Reference Panel Selection Using Maximal Phylogenetic Diversity

Author:

Zhang Peng1,Zhan Xiaowei2,Rosenberg Noah A3,Zöllner Sebastian24

Affiliation:

1. Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109

2. Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109

3. Department of Biology, Stanford University, Stanford, California 94305

4. Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48109

Abstract

Abstract The recent dramatic cost reduction of next-generation sequencing technology enables investigators to assess most variants in the human genome to identify risk variants for complex diseases. However, sequencing large samples remains very expensive. For a study sample with existing genotype data, such as array data from genome-wide association studies, a cost-effective approach is to sequence a subset of the study sample and then to impute the rest of the study sample, using the sequenced subset as a reference panel. The use of such an internal reference panel identifies population-specific variants and avoids the problem of a substantial mismatch in ancestry background between the study population and the reference population. To efficiently select an internal panel, we introduce an idea of phylogenetic diversity from mathematical phylogenetics and comparative genomics. We propose the “most diverse reference panel”, defined as the subset with the maximal “phylogenetic diversity”, thereby incorporating individuals that span a diverse range of genotypes within the sample. Using data both from simulations and from the 1000 Genomes Project, we show that the most diverse reference panel can substantially improve the imputation accuracy compared to randomly selected reference panels, especially for the imputation of rare variants. The improvement in imputation accuracy holds across different marker densities, reference panel sizes, and lengths for the imputed segments. We thus propose a novel strategy for planning sequencing studies on samples with existing genotype data.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3