RefRGim: an intelligent reference panel reconstruction method for genotype imputation with convolutional neural networks

Author:

Shi Shuo1,Qian Qiheng1,Yu Shuhuan1,Wang Qi2,Wang Jinyue1,Zeng Jingyao1,Du Zhenglin1,Xiao Jingfa1ORCID

Affiliation:

1. National Genomics Data Center of Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China

2. Qujiang culture finance holding (Group) Co., Ltd, Xian, China

Abstract

Abstract Genotype imputation is a statistical method for estimating missing genotypes from a denser haplotype reference panel. Existing methods usually performed well on common variants, but they may not be ideal for low-frequency and rare variants. Previous studies showed that the population similarity between study and reference panels is one of the key factors influencing the imputation accuracy. Here, we developed an imputation reference panel reconstruction method (RefRGim) using convolutional neural networks (CNNs), which can generate a study-specified reference panel for each input data based on the genetic similarity of individuals from current study and references. The CNNs were pretrained with single nucleotide polymorphism data from the 1000 Genomes Project. Our evaluations showed that genotype imputation with RefRGim can achieve higher accuracies than original reference panel, especially for low-frequency and rare variants. RefRGim will serve as an efficient reference panel reconstruction method for genotype imputation. RefRGim is freely available via GitHub: https://github.com/shishuo16/RefRGim

Funder

Center for Advanced Study

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3