Chromatin-Modifiying Enzymes Are Essential When the Saccharomyces cerevisiae Morphogenesis Checkpoint Is Constitutively Activated

Author:

Ruault Myriam1,Pillus Lorraine1

Affiliation:

1. Division of Biological Sciences, UCSD Moores Cancer Center and Center for Molecular Genetics, University of California, San Diego, California 92093-0347

Abstract

Abstract Hsl7p plays a central role in the morphogenesis checkpoint triggered when yeast bud formation is impaired and is proposed to function as an arginine methyltransferase. HSL7 is also essential in the absence of the N-terminal tails of histones H3 or H4. The requirement for H3 and H4 tails may indicate a need for their post-translational modification to bypass the morphogenesis checkpoint. In support of this, the absence of the acetyltransferases Gcn5p or Esa1p, the deacetylase Rpd3p, or the lysine-methyltransferase Set1p resulted in death or extreme sickness in hslΔ mutants. These synthetic interactions involved both the activity of the chromatin-modifying enzymes and the complexes through which they act. Newly reported silencing phenotypes of hsl7Δ mirror those previously reported for gcn5Δ and rpd3Δ, thereby strengthening their functional links. In addition, synthetic interactions and silencing phenotypes were suppressed by inactivation of the morphogenesis checkpoint, either by SWE1 deletion or by preventing Cdc28p phosphorylation. A catalytically dead Hsl7p retained wild-type interactions, implying that modification of histone H3 or H4 N termini by Gcn5p, Esa1p, Rpd3p, and Set1p, but not by Hsl7p, was needed to bypass the morphogenesis checkpoint.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3