Affiliation:
1. Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
Abstract
Defining all sites for a post-translational modification in the cell, and identifying their upstream modifying enzymes, is essential for a complete understanding of a modification’s function. However, the complete mapping of a modification in the proteome and definition of its associated enzyme–substrate network is rarely achieved. Here, we present the protein methylation network for
Saccharomyces cerevisiae.
Through a formal process of defining and quantifying all potential sources of incompleteness, for both the methylation sites in the proteome and also protein methyltransferases, we prove that this protein methylation network is now near-complete. It contains 33 methylated proteins and 28 methyltransferases, comprising 44 enzyme-substrate relationships, and a predicted further three enzymes. While the precise molecular function of most methylation sites is unknown, and it remains possible that other sites and enzymes remain undiscovered, the completeness of this protein modification network is unprecedented and allows us to holistically explore the role and evolution of protein methylation in the eukaryotic cell. We show that while no single protein methylation event is essential in yeast, the vast majority of methylated proteins are themselves essential, being primarily involved in the core cellular processes of transcription, RNA processing, and translation. This suggests that protein methylation in lower eukaryotes exists to fine-tune proteins whose sequences are evolutionarily constrained, providing an improvement in the efficiency of their cognate processes. The approach described here, for the construction and evaluation of post-translational modification networks and their constituent enzymes and substrates, defines a formal process of utility for other post-translational modifications.
Funder
Department of Education | Australian Research Council
Publisher
Proceedings of the National Academy of Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献