Thermodynamics of Neutral Protein Evolution

Author:

Bloom Jesse D1,Raval Alpan2,Wilke Claus O3

Affiliation:

1. Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125

2. Keck Graduate Institute of Applied Life Sciences and School of Mathematical Sciences, Claremont Graduate University, Claremont, California 91711 and

3. Section of Integrative Biology and Center for Computational Biology and Bioinformatics, University of Texas, Austin, Texas 78712

Abstract

Abstract Naturally evolving proteins gradually accumulate mutations while continuing to fold to stable structures. This process of neutral evolution is an important mode of genetic change and forms the basis for the molecular clock. We present a mathematical theory that predicts the number of accumulated mutations, the index of dispersion, and the distribution of stabilities in an evolving protein population from knowledge of the stability effects (ΔΔG values) for single mutations. Our theory quantitatively describes how neutral evolution leads to marginally stable proteins and provides formulas for calculating how fluctuations in stability can overdisperse the molecular clock. It also shows that the structural influences on the rate of sequence evolution observed in earlier simulations can be calculated using just the single-mutation ΔΔG values. We consider both the case when the product of the population size and mutation rate is small and the case when this product is large, and show that in the latter case the proteins evolve excess mutational robustness that is manifested by extra stability and an increase in the rate of sequence evolution. All our theoretical predictions are confirmed by simulations with lattice proteins. Our work provides a mathematical foundation for understanding how protein biophysics shapes the process of evolution.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3