Divergent Pairwise Epistasis in the Context of Unstable Membrane Protein Variants

Author:

Chamness Laura M.1ORCID,Kuntz Charles P.2,McKee Andrew G.1,Penn Wesley D.1,Hemmerich Christopher M.3,Rusch Douglas B.3,Woods Hope45,Dyotima 1,Meiler Jens46ORCID,Schlebach Jonathan P.12ORCID

Affiliation:

1. Department of Chemistry, Indiana University, Bloomington, Indiana, USA

2. Department of Chemistry, Purdue University, West Lafayette, Indiana, USA

3. Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA

4. Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA

5. Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, USA

6. Institute for Drug Development, Leipzig University, Leipzig, SAC, Germany

Abstract

Many eukaryotic membrane proteins are prone to misfolding, which compromises their functional expression at the plasma membrane. This is particularly true for mammalian gonadotropin-releasing hormone receptors (GnRHRs), which are G protein-coupled receptors involved in reproductive steroidogenesis. We recently demonstrated that evolutionary modifications within mammalian GnRHRs appear to have coincided with adaptive changes in cotranslational folding efficiency. Though changes in protein stability are known to shape evolutionary interactions, it is unclear how the energetic drivers of cotranslational folding in the membrane may modify epistatic interactions. We therefore surveyed the pairwise epistatic interactions that modify the expression of two destabilized GnRHR variants bearing mutations that selectively compromise either its membrane topology (V276T) or its native tertiary structure (W107A). Using deep mutational scanning (DMS), we evaluated how the effects of these mutations on the expression of the mature form of the protein at the plasma membrane are modified by hundreds of secondary mutations. A focused analysis of 251 mutants with high-quality measurements in three genetic backgrounds reveals that V276T and W107A form distinct epistatic interactions that depend on both the degree to which they destabilize the protein and the mechanism of their destabilization. An unsupervised learning analysis shows that V276T forms predominantly negative epistatic interactions that are most pronounced among destabilizing mutations within soluble loop regions. In contrast, W107A forms interactions with mutations in both loops and transmembrane domains that skew positive as a result of the diminishing impact of the destabilizing mutations in the context of an already unstable variant. These findings provide general insights into how pairwise epistasis is remodeled by conformational defects in membrane proteins and, more generally, in unstable proteins.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3