Transcriptional Networks for Alcohol Sensitivity in Drosophila melanogaster

Author:

Morozova Tatiana V12,Mackay Trudy F C23,Anholt Robert R H123

Affiliation:

1. Department of Biology

2. W. M. Keck Center for Behavioral Biology and

3. Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695

Abstract

Abstract Understanding the genetic architecture of polygenic traits requires investigating how complex networks of interacting molecules mediate the effect of genetic variation on organismal phenotypes. We used a combination of P-element mutagenesis and analysis of natural variation in gene expression to predict transcriptional networks that underlie alcohol sensitivity in Drosophila melanogaster. We identified 139 unique P-element mutations (124 in genes) that affect sensitivity or resistance to alcohol exposure. Further analyses of nine of the lines showed that the P-elements affected expression levels of the tagged genes, and P-element excision resulted in phenotypic reversion. The majority of the mutations were in computationally predicted genes or genes with unexpected effects on alcohol phenotypes. Therefore we sought to understand the biological relationships among 21 of these genes by leveraging genetic correlations among genetically variable transcripts in wild-derived inbred lines to predict coregulated transcriptional networks. A total of 32 “hub” genes were common to two or more networks associated with the focal genes. We used RNAi-mediated inhibition of expression of focal genes and of hub genes connected to them in the network to confirm their effects on alcohol-related phenotypes. We then expanded the computational networks using the hub genes as foci and again validated network predictions. Iteration of this approach allows a stepwise expansion of the network with simultaneous functional validation. Although coregulated transcriptional networks do not provide information about causal relationships among their constituent transcripts, they provide a framework for subsequent functional studies on the genetic basis of alcohol sensitivity.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3