Analysis of a Strong Suppressor of Segregation Distorter in Drosophila melanogaster

Author:

Greenberg Temin Rayla

Abstract

Abstract Segregation Di st orter (SD) is a naturally occurring male meiotic drive system in Drosophila melanogaster, characterized by almost exclusive transmission of the SD chromosome owing to dysfunction of sperm receiving the SD+ homolog. Previous studies identified at least three closely linked loci on chromosome 2 required for distortion: Sd, the primary distorting gene; E(SD) (Enhancer of SD), which increases the strength of distortion; and Rsp (Responder), the apparent target of Sd. Strength of distortion is also influenced by linked upward modifiers including M(SD) (Modifier of SD) and St(SD) (Stabilizer of SD), and by various unlinked suppressors. Although Sd is known to encode a mutant RanGAP protein, none of the modifiers have been molecularly identified. This work focuses on the genetic and cytological characterization of a strong X-linked suppressor, Su(SD), capable of restoring Mendelian transmission in SD/SD+ males. Sd and its cohort of positive modifiers appear to act semiquantitatively in opposition to Su(SD) with distortion strength depending primarily on the total number of distorting elements rather than which particular elements are present. Su(SD) can also suppress male sterility observed in certain SD genotypes. To facilitate its eventual molecular identification, Su(SD) was localized by deletion mapping to polytene region 13C7-13E4. These studies highlight the polygenic nature of distortion and its dependence on a constellation of positive and negative modifiers, provide insight into the stability of Mendelian transmission in natural populations even when a drive system arises, and pave the way for molecular characterization of Su(SD) whose identity should reveal new information about the mechanism of distortion.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3