Affiliation:
1. Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721 and
2. Unité Mixte de Recherche BiO3P Institut National de la Recherche Agronomique (INRA)–Agrocampus Ouest-Université Rennes 1, INRA Domaine de la Motte, 35653 Le Rheu Cedex, France
Abstract
Abstract
Mutations in maternally transmitted symbionts can affect host fitness. In this study we investigate a mutation in an obligate bacterial symbiont (Buchnera), which has dramatic effects on the heat tolerance of pea aphid hosts (Acyrthosiphon pisum). The heat-sensitive allele arises through a single base deletion in a homopolymer within the promoter of ibpA, which encodes a universal small heat-shock protein. In laboratory cultures reared under cool conditions (20°), the rate of fixation (1.4 × 10−3 substitutions per Buchnera replication) is much higher than the previously estimated mutation rate for single base deletions in homopolymers in the Buchnera genome, implying a strong selective benefit. This mutation recurs in natural populations, but seldom reaches high frequencies, implying that it is only rarely favored by selection. Another potential source of physiological stress in pea aphids is infection by other microorganisms, including facultative bacterial symbionts, which occur in a majority of pea aphids in field populations. Frequency of the heat-sensitive Buchnera allele is negatively correlated with presence of facultative symbionts in both laboratory colonies and field populations, suggesting that these infections impose stress that is ameliorated by ibpA expression. This single base polymorphism in Buchnera has the potential to allow aphid populations to adapt quickly to prevailing conditions.
Publisher
Oxford University Press (OUP)
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献