Structured Genome-Wide Association Studies with Bayesian Hierarchical Variable Selection

Author:

Zhao Yize1,Zhu Hongtu2,Lu Zhaohua3,Knickmeyer Rebecca C4,Zou Fei5

Affiliation:

1. Department of Healthcare Policy and Research, Cornell University Weill Cornell, New York, New York 10065

2. Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599

3. Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105

4. Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan 48824

5. Department of Biostatistics, University of Florida, Gainesville, Florida 32611

Abstract

Abstract It becomes increasingly important in using genome-wide association studies (GWAS) to select important genetic information associated with qualitative or quantitative traits. Currently, the discovery of biological association among SNPs motivates various strategies to construct SNP-sets along the genome and to incorporate such set information into selection procedure for a higher selection power, while facilitating more biologically meaningful results. The aim of this paper is to propose a novel Bayesian framework for hierarchical variable selection at both SNP-set (group) level and SNP (within group) level. We overcome a key limitation of existing posterior updating scheme in most Bayesian variable selection methods by proposing a novel sampling scheme to explicitly accommodate the ultrahigh-dimensionality of genetic data. Specifically, by constructing an auxiliary variable selection model under SNP-set level, the new procedure utilizes the posterior samples of the auxiliary model to subsequently guide the posterior inference for the targeted hierarchical selection model. We apply the proposed method to a variety of simulation studies and show that our method is computationally efficient and achieves substantially better performance than competing approaches in both SNP-set and SNP selection. Applying the method to the Alzheimers Disease Neuroimaging Initiative (ADNI) data, we identify biologically meaningful genetic factors under several neuroimaging volumetric phenotypes. Our method is general and readily to be applied to a wide range of biomedical studies.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3