Polymorphisms in Multiple Genes Contribute to the Spontaneous Mitochondrial Genome Instability of Saccharomyces cerevisiae S288C Strains

Author:

Dimitrov Lazar N12,Brem Rachel B3,Kruglyak Leonid4,Gottschling Daniel E12

Affiliation:

1. Department of Genome Sciences, University of Washington, Seattle, Washington 98195

2. Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109

3. Department of Molecular and Cell Biology, University of California, Berkeley, California 94720

4. Lewis-Sigler Institute for Integrative Genomics, Department of Ecology and Evolutionary Biology and Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey 08544 and

Abstract

Abstract The mitochondrial genome (mtDNA) is required for normal cellular function; inherited and somatic mutations in mtDNA lead to a variety of diseases. Saccharomyces cerevisiae has served as a model to study mtDNA integrity, in part because it can survive without mtDNA. A measure of defective mtDNA in S. cerevisiae is the formation of petite colonies. The frequency at which spontaneous petite colonies arise varies by ∼100-fold between laboratory and natural isolate strains. To determine the genetic basis of this difference, we applied quantitative trait locus (QTL) mapping to two strains at the opposite extremes of the phenotypic spectrum: the widely studied laboratory strain S288C and the vineyard isolate RM11-1a. Four main genetic determinants explained the phenotypic difference. Alleles of SAL1, CAT5, and MIP1 contributed to the high petite frequency of S288C and its derivatives by increasing the formation of petite colonies. By contrast, the S288C allele of MKT1 reduced the formation of petite colonies and compromised the growth of petite cells. The former three alleles were found in the EM93 strain, the founder that contributed ∼88% of the S288C genome. Nearly all of the phenotypic difference between S288C and RM11-1a was reconstituted by introducing the common alleles of these four genes into the S288C background. In addition to the nuclear gene contribution, the source of the mtDNA influenced its stability. These results demonstrate that a few rare genetic variants with individually small effects can have a profound phenotypic effect in combination. Moreover, the polymorphisms identified in this study open new lines of investigation into mtDNA maintenance.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3