Schrödinger’s yeast: the challenge of using transformation to compare fitness among Saccharomyces cerevisiae that differ in ploidy or zygosity

Author:

Sandell Linnea1,König Stephan G.12ORCID,Otto Sarah P.1ORCID

Affiliation:

1. Department of Zoology and Biodiversity Research Center, University of British Columbia, Vancouver, Canada

2. Department of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada

Abstract

How the number of genome copies modifies the effect of random mutations remains poorly known. In yeast, researchers have investigated these effects for knock-out or other large-effect mutations, but have not accounted for differences at the mating-type locus. We set out to compare fitness differences among strains that differ in ploidy and/or zygosity using a panel of spontaneously arising mutations acquired in haploid yeast from a previous study. To ensure no genetic differences, even at the mating-type locus, we embarked on a series of transformations, which first sterilized and then temporarily introduced plasmid-borne mating types. Despite these attempts to equalize the haplotypes, fitness variation introduced during transformation swamped the differences among the original mutation-accumulation lines. While colony size looked normal, we observed a bi-modality in the maximum growth rate of our transformed yeast and determined that many of the slow growing lines were respiratory deficient (“petite”). Not previously reported, we found that yeast that were TID1/RDH54 knockouts were less likely to become petite. Even for lines with the same petite status, however, we found no correlation in fitness between the two replicate transformations performed. These results pose a challenge for any study using transformation to measure the fitness effect of genetic differences among strains. By attempting to hold haplotypes constant, we introduced more mutations that overwhelmed our ability to measure fitness differences between the genetic states. In this study, we transformed over one hundred different lines of yeast, using two independent transformations, and found that this common laboratory procedure can cause large changes to the microbe studied. Our study provides a cautionary tale of the need to use multiple transformants in fitness assays.

Funder

University of British Columbia to Linnea Sandell and a Natural Sciences and Engineering Research Council of Canada

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3