Genomically Biased Accumulation of Seed Storage Proteins in Allopolyploid Cotton

Author:

Hu Guanjing1,Houston Norma L2,Pathak Dharminder1,Schmidt Linnea1,Thelen Jay J2,Wendel Jonathan F1

Affiliation:

1. Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011

2. Division of Biochemistry and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211

Abstract

Abstract Allopolyploidy is an important process during plant evolution that results in the reunion of two divergent genomes into a common nucleus. Many of the immediate as well as longer-term genomic and epigenetic responses to polyploidy have become appreciated. To investigate the modifications of gene expression at the proteome level caused by allopolyploid formation, we conducted a comparative analysis of cotton seed proteomes from the allopolyploid Gossypium hirsutum (AD genome) and its model A-genome and D-genome diploid progenitors. An unexpectedly high level of divergence among the three proteomes was found, with about one-third of all protein forms being genome specific. Comparative analysis showed that there is a higher degree of proteomic similarity between the allopolyploid and its D-genome donor than its A-genome donor, reflecting a biased accumulation of seed proteins in the allopolyploid. Protein identification and genetic characterization of high-abundance proteins revealed that two classes of seed storage proteins, vicilins and legumins, compose the major component of cotton seed proteomes. Analyses further indicate differential regulation or modification of homoeologous gene products, as well as novel patterns in the polyploid proteome that may result from the interaction between homoeologous gene products. Our findings demonstrate that genomic merger and doubling have consequences that extend beyond the transcriptome into the realm of the proteome and that unequal expression of proteins from diploid parental genomes may occur in allopolyploids.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3