Genetics, Breeding and Genetic Engineering to Improve Cottonseed Oil and Protein: A Review

Author:

Wu Man,Pei Wenfeng,Wedegaertner Tom,Zhang Jinfa,Yu Jiwen

Abstract

Upland cotton (Gossypium hirsutum) is the world’s leading fiber crop and one of the most important oilseed crops. Genetic improvement of cotton has primarily focused on fiber yield and quality. However, there is an increased interest and demand for enhanced cottonseed traits, including protein, oil, fatty acids, and amino acids for broad food, feed and biofuel applications. As a byproduct of cotton production, cottonseed is an important source of edible oil in many countries and could also be a vital source of protein for human consumption. The focus of cotton breeding on high yield and better fiber quality has substantially reduced the natural genetic variation available for effective cottonseed quality improvement within Upland cotton. However, genetic variation in cottonseed oil and protein content exists within the genus of Gossypium and cultivated cotton. A plethora of genes and quantitative trait loci (QTLs) (associated with cottonseed oil, fatty acids, protein and amino acids) have been identified, providing important information for genetic improvement of cottonseed quality. Genetic engineering in cotton through RNA interference and insertions of additional genes of other genetic sources, in addition to the more recent development of genome editing technology has achieved considerable progress in altering the relative levels of protein, oil, fatty acid profile, and amino acids composition in cottonseed for enhanced nutritional value and expanded industrial applications. The objective of this review is to summarize and discuss the cottonseed oil biosynthetic pathway and major genes involved, genetic basis of cottonseed oil and protein content, genetic engineering, genome editing through CRISPR/Cas9, and QTLs associated with quantity and quality enhancement of cottonseed oil and protein.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3