Accuracy of Demographic Inferences from the Site Frequency Spectrum: The Case of the Yoruba Population

Author:

Lapierre Marguerite12,Lambert Amaury23,Achaz Guillaume12

Affiliation:

1. Atelier de Bioinformatique, UMR 7205 ISyEB, MNHN-UPMC-CNRS-EPHE, Muséum National d’Histoire Naturelle, 75005 Paris, France

2. SMILE (Stochastic Models for the Inference of Life Evolution), UMR 7241 CIRB, Collège de France, CNRS, INSERM, PSL Research University, 75005 Paris, France

3. Laboratoire de Probabilités et Modèles Aléatoires (LPMA), UMR 7599, UPMC-CNRS, 75005 Paris, France

Abstract

Abstract Some methods for demographic inference based on the observed genetic diversity of current populations rely on the use of summary statistics such as the Site Frequency Spectrum (SFS). Demographic models can be either model-constrained with numerous parameters, such as growth rates, timing of demographic events, and migration rates, or model-flexible, with an unbounded collection of piecewise constant sizes. It is still debated whether demographic histories can be accurately inferred based on the SFS. Here, we illustrate this theoretical issue on an example of demographic inference for an African population. The SFS of the Yoruba population (data from the 1000 Genomes Project) is fit to a simple model of population growth described with a single parameter (e.g., founding time). We infer a time to the most recent common ancestor of 1.7 million years (MY) for this population. However, we show that the Yoruba SFS is not informative enough to discriminate between several different models of growth. We also show that for such simple demographies, the fit of one-parameter models outperforms the stairway plot, a recently developed model-flexible method. The use of this method on simulated data suggests that it is biased by the noise intrinsically present in the data.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3